©2013, 2014 xseek-qm.netåºå 反重力装置は開発できるのですか?UFOの飛行原理とも呼ばれ、ステルス爆撃機にも一部使われているという「反重力装置」は、いまだその原理が解明されておらず、さまざまな研究が行われている。そんな中、幸福の科学学園・那須本校(栃木県那須町)の学園祭「大鷲祭」で8、9の両日、中高 … 重力発生装置(以下原理的には可能ですか?) たまにはSFまがいの質問も面白いかとおもいまし た。(回答はお暇なときで結構です) 宇宙空間にある半径の球形の器を準備します。 内部は空洞で真空 æçµçãªçµè«ã¨ãã¦ãéåã®çºçåå ã¯è¬ã§ãã 重力の仕組みな何ですか。無重力状態を作れますかNo.5 です。>宇宙飛行士が長期間宇宙で滞在するには地上で訓練するため地上で無重力装置の開発が必要ですね>どうやって作っているのでしょうかそういう設備は作れません。なので、「落 人工重力発生装置には回るテーブルがついていて、回転することによって重力を作り出してます。 陸上競技のハンマー投げの選手がハンマーをピアノ線につないで握り、体を中心にぐるぐる回転して勢いをつけている姿を見たことがあるでしょうか。
重力ってどうゆう原理で発生してるんですか??またもし無くなると自転の遠心力で地表のものは飛んできますか?? ∟JASRAC許諾番号:9008249113Y38200Copyright (C) 2020 Yahoo Japan Corporation. アインシュタインの一般相対性理論によれば、質量をもった物体が存在すると、それだけで時空にゆがみができます。さらにその物体が(軸対称ではない)運動をすると、 この時空のゆがみが光速で伝わっていきます。これが重力波です。重力波はすべてを貫通し、減衰しないと考えられています。東京大学宇宙線研究所の重力波研究グループでは、「重力波」の直接検出を行い、それを将来の「重力波による天体観測」の創生につなげていきたいと考えています。人類は、太古よりつい最近まで可視光でしか自然を観察できませんでした。しかし19世紀に入って電波やX線が発見されると、遠くに一瞬で情報を伝えたり、人体や物質の中の様子が観察できるようになりました。そのため今まで全く未知だった世界への扉が開かれ、人類の知識の増大・世界観の変化に大きく役立ちました。 その後も赤外線・紫外線やガンマ線など、次々と新しい「観測手段」が発見されるごとに、未知なる世界が人類に解き放たれています。これらはすべて「波動現象」を利用した情報伝達による自然観察と言うことができます。従って電磁波と同じ「波動現象」である「重力波」も、この歴史にならって新しい観測手段となり人類に未知なる世界を垣間見ることを可能にするであろうと期待されるのです。ここで大事なことは、「重力波」は「波動現象」ですが、人類が今まで発見し道具としてきた「電磁波」の仲間とは大きく異なる特徴を持つという点です。その名が示すとおり、重力波は「重力」を発生する起源である「質量」が運動することで発生します。その「質量」というものは、「時空」の構造という物理学の一大テーマを決定するために非常に重要な要素です。このことが「重力波」を使った自然の観察が、「電磁波」の仲間を使った観察と根本的に異なる世界(それがなんだかわからないところがもどかしいですが)を切り開くという期待をより一層高める要因ともなっています。科学者たちが期待しているものは、などです。アインシュタイン博士が導き出した一般相対性理論から予測される物理現象です。重さを持つ物は、その重力で周りの時空を「歪(ゆが)めて」います。その物体が運動をすると、周りの歪んだ時空が波のように宇宙空間に広がってゆきます。これが重力波です。(図:重力と重力波)そうなると我々は、「重力波」の発生源を宇宙の星に求めるしかありません。その代表的なものが、「中性子星同士の連星とその合体」や「超新星爆発」です。超新星爆発は、星が一生を終えて爆発し、その質量の大部分を宇宙空間に一瞬にして解き放つ非常に劇的な現象です。(図:重力波の発生)中性子星とは、その一生を終え爆発した星のうち、飛ばされなかった太陽ほどの質量が半径10km程度にまで押しつぶされてしまった星のことです。私達は、このような天体現象から発生する「重力波」を、直接検出するための装置を開発しています。重力波が到来すると、二つの物体(厳密には自由落下している物体)の間の距離が変化して見えます(図:重力波の効果)。そのため、それを検出することが装置の基本となります。しかも重力波による物体間距離の変化は、直交する二つの方向のうち、片方が伸びた時はもう片方が縮むという変化を繰り返します。その伸縮量は、物体間距離が離れていればいるほど大きくなる性質があります。しかし先に説明した天体現象が我々のいる銀河系とは違う他の遠い銀河で発生した場合、その重力波が地球に届いたときの信号の大きさは地球・太陽間程度の距離を、たかだか水素原子1個分動かす程度にすぎないほど小さいのです!運よくそのような天体現象が、我々の銀河で発生してくれれば信号が数十倍大きく出るので、現在の技術でもその重力波を捕らえることが出来ます!しかし、その発生確率は数十万年に一回という小ささです。当然そんなに待ってられませんので、観測対象を増加させるために、さらに遠くで発生した重力波 のより小さな時空の振動をとらえられるように工夫した高性能な重力波検出器を開発することが必要なのです。重力波は、全てのものを貫通してしまうため、なにかにぶつけてその反応をみるという方法はとれません。しかし光は重力波によってゆがんだ空間に沿って走る性質があり、それと先の説明のあった直交方向で伸縮するという性質を利用して、基本的には「マイケルソン干渉計」を用います(図:検出方法)。長さを測るには、同じ光を直交する2方向に向けて発射し、遠くに置いた鏡で反射させ、また戻ってきた光の到達時間を両方で比較します。伸びた距離を走った光のほうが短い距離を走った方の光より帰ってくるのに時間が長くかかるため、伸縮の有無が分かります。ただし、地球上では地球が丸いことや、地下の検出器の場合は山の形状による制約もあり、光が走る腕の長さはせいぜい3〜4キロメート ル程度にしか取れません。そのため一回折り返しでは6〜8キロメートルしか走れません。それでは無駄が多いので、片腕に鏡を二枚用意して、その間を何度も反射して折り返します。KAGRAの場合、鏡の反射率を調整して、3キロメートル離れた鏡の間をレーザー光が平均で約500往復するようにします。ちょっと難しくなりますが、重力波検出器の検出能力(つまり「感度」)が具体的にどのように表現されるかと言うと(図:必要な検出器感度)のように横軸が重力波の周波数、縦軸が重力波で起こった腕の伸縮の大きさを腕の長さで割ったもの(ひずみ)で表します。現在の重力波検出器は、重力波の周波数 100Hzあたりの領域でひずみの大きさが10図:必要な検出器感度感度を制限する(悪くする)ものは主に三つあります。低周波側が地球の地面振動。中周波数が、鏡の熱振動。そして高周波側が、レーザー光線の「光の量子性」というちょっと難しい性質の振動です。これらをいかにうまく低減するかが、高感度化の鍵となります。